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 The familial hypercholesterolemia (FH) phenotype is 
characterized by elevated plasma LDL-cholesterol (LDL-C) 
levels, xanthomas, and premature atherosclerosis associ-
ated with increased risk of coronary artery disease (CAD). 
FH is caused primarily by loss-of-function (LOF) muta-
tions in the LDL receptor gene ( LDLR ) responsible for 
the removal of plasma cholesterol, which is mainly found 
in LDL particles ( 1 ) or in the apolipoprotein B gene ( 2 ), 
the main protein component of LDL. In 2003, Abifadel 
et al. ( 3 ) identifi ed another protein associated with this 
phenotype, the proprotein convertase subtilisin/kexin-9 
(PCSK9) ( 4 ). 

 The human PCSK9 gene ( PCSK9 ) located on chromo-
some 1p32.3 is ~22 kb long and comprises 12 exons encod-
ing a 692 amino acid protein ( 5 ). PCSK9 is expressed mainly 
in the liver, small intestine, and kidney ( 4 ) and is thought to 
accelerate the degradation of hepatic LDLR in endosomes/
lysosomes ( 6 ) by direct binding to the epidermal growth 
factor-like repeat A (EGF-A) domain of the LDLR ( 7, 8 ). 
PCSK9 overexpression in cell lines and mice has been 
shown to reduce LDLR levels and increase plasma LDL-C 
( 9–12 ). Similarly, transgenic overexpression of mouse ( 13 ) 
and human PCSK9 ( 14 ) in hepatocytes or human PCSK9 in 
kidney ( 15 ) also results in a dramatic reduction of hepatic 
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lower plasma levels of LDL-C and PCSK9. The mechanism 
behind such observations is shown to be related to a 3-fold 
lower secretion rate of PCSK9-R434W from cells and 
~70% LOF on its effect on cell surface LDLR. 

  MATERIALS AND METHODS  

 Production and purifi cation of anti-PCSK9 antibodies 
 Recombinant truncated human PCSK9 (rPCSK9; Met-amino 

acids 31–454) was produced in bacteria and purifi ed as described 
( 6 ). It was injected into two rabbits by a standard protocol to 
generate a polyclonal antibody to human PCSK9 (hPCSK9-Ab). 
The antibodies were fi rst prepurifi ed by precipitation with 
ammoni um sulfate (50% fi nal concentration). After solubiliza-
tion and dialysis of the precipitate, the antibodies were purifi ed 
by affi nity chromatography using a CNBr-activated Sepharose 4B 
column (GE Healthcare Bio-Sciences AB, Sweden) coupled with 
the purifi ed antigen (rPCSK9). A fraction of this purifi ed anti-
body was conjugated with horseradish peroxidase (hPCSK9-
Ab-HRP) using the EZ-Link™ Plus Activated Peroxidase protocol 
from Pierce (Rockford, IL). Finally, the conjugated antibody was 
purifi ed from excess free HRP using the FreeZyme Conjugate 
Purifi cation kit (Pierce prod no. 44920). 

 Immunoprecipitation and immunoblotting 
 Immunoprecipitations were carried out as previously described 

( 17 ) using the hPCSK9-Ab and activated agarose beads coupled 
with goat anti-rabbit IgG (Trueblot™ eBioscience, San Diego, 
CA) according to the manufacturer’s instructions. Immunopre-
cipitated proteins were separated on 4–20% gradient acrylamide 
gels and transferred to a polyvinylidene difl uoride membrane 
(Immobilon-P™, Millipore, Billerica, MA). For immunoblotting, 
hPCSK9-Ab-HRP was used at a dilution of 1:500. The blots were 
revealed by chemiluminescence with Pierce SuperSignal™ West 
Dura on Amersham Hyperfi lm™ ECL (GE Healthcare Limited, 
UK). HepG2 and HuH7 cells were cultured as previously 
described ( 17, 28 ). 

 Subjects, sample handling, and sequencing 
 Blood was collected into EDTA-Vacutainer™ tubes after a 12 h 

fast. Samples were taken from 254 healthy volunteers over 18 
years of age who were not taking any medication for hyperlipi-
demia, hypertension, or diabetes, and from 200 hyperlipidemic 
patients attending our lipid clinic. Plasma and blood leukocytes 
were obtained by centrifugation at 3,000 rpm for 15 min at 4°C. 
Total and lipoprotein cholesterol and TGs were quantitated at 
the laboratory of the Centre Hospitalier de l’Université de 
Montréal using a standard enzymatic method on a Bayer Advia 
multi-analyzer. LDL-C was calculated using the Friedewald 
equation, except if TG were  � 4.5 mmol/L (n = 6) ( 32 ). All 
subjects gave informed written consent and the Institut de 
recher ches cliniques de Montréal (IRCM) ethics committee 
approved this protocol. DNA was extracted from white blood 
cells using QIAmp Blood Maxi kit (Qiagen, Missisauga, ON) 
according to the manufacturer’s instructions. The sequences of 
the primers used for amplifying all 12 exons were obtained 
from NCBI at http://www.ncbi.nlm.nih.gov/genome/probe/ 
using the resequencing ampl icons for PCSK9. The amplifi ed 
fragments were purifi ed from agarose gels using QIAquick Gel 
Extraction kit (Qiagen, Missisauga, ON) and sequenced on a 
3130 XL Genetic analyzer from ABI (Applied Biosystems, Fos-
ter City, CA) using M13 sequenc ing primers. Sequences were 

LDLR. Furthermore, parabiotic transfer of plasma PCSK9 
from human  PCSK9  transgenic mice to wild-type (WT) mice 
causes a dramatic reduction in hepatic LDLR levels ( 14 ). 
Conversely, inactivation of the mouse  Pcsk9  gene leads to 
increased LDLR protein and decreased plasma LDL-C ( 13, 
16 ). During secretion, PCSK9 may be cleaved by a furin-like 
proprotein convertase(s), curtailing its action on cell sur-
face LDLR ( 17 ). 

 To date, more than 40 amino acid variants of PCSK9 
have been shown to affect plasma cholesterol levels in 
humans ( 5, 18–20 ). These changes are classifi ed as gain-
of-function (GOF) mutations when they are associated 
with high levels of LDL-C and as LOF mutations when 
associated with low LDL-C. GOF mutations result in mild 
to severe hypercholesterolemia. In the most severe Anglo-
Saxon mutation, D374Y, total cholesterol (TC) values 
reach as high as 13.1 mmol/L ( 21 ). The onset of CAD in 
patients with D374Y may be 10 years sooner than in 
heterozygous FH patients with severe LDLR mutations 
( 22 ). On the other hand, a retrospective study has shown 
a signifi cantly reduced risk of CAD in carriers of PCSK9 
LOF variants R46L (partial LOF) and Y142× or C679× 
(complete LOF). Together, the latter two nonsense muta-
tions were associated with a 28% reduction of plasma 
LDL-C and an 88% reduction in the frequency of coro-
nary events ( 23 ). While that study supported the cardio-
protective role of long-term reduction of cholesterol 
levels, a direct protective effect of reduced PCSK9 was 
not excluded. Furthermore, a compound heterozygote 
for two inactivating mutations (Y142× and  � R97) in 
PCSK9 had a strikingly low plasma level of LDL-C (0.36 
mmol/L) and no immunodetectable circulating PCSK9 
( 18 ). Another individual homozygous for the C679× mu-
tation had a plasma LDL-C of 0.41 mmol/L ( 24 ). All 
these fi ndings support the hypothesis that levels and/or 
higher activity of plasma PCSK9 modulate the levels of 
LDL-C and TC, suggesting that long-term lowering 
of PCSK9 might be benefi cial in reducing the incidence 
of CAD ( 25 ). 

 PCSK9, like the LDLR, is regulated by sterol regulatory 
element-binding protein-2 (SREBP-2), a transcription 
factor involved in activation of many genes implicated in 
cholesterol metabolism ( 26, 27 ). This fi nding is sup-
ported by our previous work, in which we showed that in 
HepG2 cells (a human hepatoma cell line) and human 
primary hepatocytes, PCSK9 mRNA levels were increased 
by statins, likely via SREBP-2 ( 28 ). Preliminary data on 
the response of PCSK9 to cholesterol-lowering therapy 
revealed that statins and fi brates can signifi cantly modify 
plasma PCSK9 levels ( 29–31 ). 

 In the present study, we measured plasma PCSK9 by 
ELISA in 254 volunteers and 200 hypercholesterolemic 
patients. We demonstrated that plasma PCSK9 levels are 
correlated signifi cantly with age and with levels of TC, 
LDL-C, triglycerides (TG), and fasting glucose. Moreover, 
we show that PCSK9 levels are markedly higher in hyper-
cholesterolemic patients than in controls and higher still 
in patients receiving cholesterol-lowering therapy. Finally, 
we identifi ed a novel LOF R434W mutant exhibiting 
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  RESULTS  

 Anti-PCSK9 antibody recognizes both mature and 
furin-cleaved PCSK9 in human plasma 

 Using affi nity-purifi ed hPCSK9-Ab, Western blot analy-
sis of human PCSK9 in the culture media of HEK293 cells 
overexpressing hPCSK9 revealed the mature (~60 kDa) 
and furin-cleaved PCSK9 (PCSK9- � N 218 ; ~53 kDa) forms 
( 17 ), none of which were observed in control cells express-
ing an empty pIRES vector. Similar immunoreactive 
PCSK9 forms are also observed in the plasma of three dif-
ferent individuals (  Fig. 1  ).  

 Validation of the ELISA to measure PCSK9 in 
human plasma 

 We designed an ELISA to measure circulating levels of 
PCSK9 in human plasma samples using an affi nity- purifi ed 
hPCSK9-Ab polyclonal antibody. Part of this antibody 
was conjugated to HRP and excess HRP was removed by 
affi nity chromatography. A linear standard curve was 
estab lished with culture media and serial 1:2 dilutions of 
the media of HEK293 cells overexpressing recombinant 
human PCSK9 ( r  2  = 0.997). This culture medium was cali-
brated with respect to purifi ed rPCSK9 characterized by 
quantitative amino acid analysis. Intra- and inter-assay 
variation coeffi cients of plasma samples were 1.6% 
(n = 33) and 7.5% (n = 48), respectively. A spike and 
recov ery assessment was performed in two different 
plasma samples containing very low endogenous PCSK9. 
Five different quantities of recombinant PCSK9 (1–10 ng) 
were added to plasma and mean recoveries were 90, 88, 
88, 94, and 98%, respectively. A plasma sample having a 
high PCSK9 concentration presented a 10% variation 
within a dilution range of 1:20 to 1:80. Three different 
plasma samples were subjected to three freeze-thaw cycles 
( � 80°C to room temperature) and their PCSK9 concen-
tration varied by ~3%, which is within the variability range 
of the assay. Interestingly, no detectable immunoreactive 
PCSK9 was present in urine or saliva. 

analyzed with Sequencher TM  software (Gene Codes Corpora-
tion, Ann Arbor, MI). 

 ELISA assay 
 LumiNunc Maxisorp white assay plates (Nunc, Denmark) 

were coated with 0.5  � g/well of hPCSK9-Ab by incubation at 
37°C for 3 h in PBS (NaPO 4  10 mM, NaCl 0.15 M, pH 7.4) con-
taining Na azide (1 g/L) then stored at 4°C. The plates were 
washed six times before use with PBS containing Tween 20 (0.5 
ml/L) and then incubated for 1 h at room temperature with 
blocking buffer (PBS, casein 0.1%, merthiolate 0.01%). Cali-
brators were prepared using serial dilutions of rPCSK9 in dilu-
tion buffer (PBS, urea 1.8 M, BSA 0.25%, Tween 20 0.5 ml/L, 
and merthiolate 0.01%). Samples were diluted 1:20 in dilution 
buffer without BSA. Calibrators and samples were incubated 
for 30 min in a water bath at 46°C prior to plate addition (100 
 � l) in duplicate. The plates were incubated overnight at 37°C 
with shaking. After washing, 100  � l of hPCSK9-Ab-HRP diluted 
1:750 was added for 3 h at 37°C with shaking. Finally, after 
washing, 100 µl of substrate (SuperSignal™ ELISA Femto Sub-
strate, Pierce) was applied to each well. Chemiluminescence 
was quantitated on a Pherastar luminometer (BMG Labtech). 
A standard curve was established using a conditioned medium 
containing recombinant human PCSK9 as described previously 
( 33 ). This standard medium was calibrated by comparison to a 
full-length secreted and purifi ed PCSK9 from a Baculovirus sys-
tem in  HiFive  cells (kind gift from Rex Parker, Bristol-Myers 
Squibb). The peptide purity and concentration were deter-
mined by quantitative amino acid analysis following 18–24 h 
hydrolysis in the presence of 5.7 N HCl in vacuo at 110°C on a 
Beckman autoanalyzer (model 6300) with a postcolumn ninhy-
drin detection system coupled to a Varian DS604 data station 
(performed by Dr C. Lazure, IRCM). Plasma PCSK9 concentra-
tion was calculated by comparing sample luminescence to the 
standard luminescence curve. It was measured on frozen 
plasma samples. 

 Statistical analysis 
 Spearman correlation coeffi cients ( r ) were used to assess the 

relationship between variables. Data were analyzed with Graph-
Pad Prism software and signifi cance defi ned as  P  < 0.05 (two-
sided). Stepwise regression analysis was performed by the 
statistical department of the Université de Montréal using SPSS 
software, version 15. ANOVA was used to determine drug dosage 
effect on PCSK9 levels. No correlations were performed in 
patients who had TG  �  4.5 mmol/L. 

 Functional analysis of the novel natural mutant R434W 
 HEK293 cells were transiently transfected with pIRES-cDNAs 

coding for WT PCSK9, or the novel variant R434W, tagged at 
the C terminus with a V5-antigen ( 4 ). Forty-eight hours post-
transfection, the cells were pulsed for 4 h with  35 S-(Cys+Met). 
Cell lysates and media were then immunoprecipitated with a V5 
mAb and the precipitates separated by SDS-PAGE (8%) and 
analyzed by autoradiography, as reported ( 4, 10 ). To defi ne the 
ability of the R434W mutant to degrade LDLR, 24 h spent me-
dia were prepared from HEK293 cells transiently transfected 
with each construct. An ELISA assay of the media defi ned the 
amount of PCSK9 secreted for each construct. The media were 
then incubated with HuH7 cells for 1 h or overnight and the 
cells were washed, detached in 0.5 mM EDTA (Versene, Gibco), 
and subjected to fl uorescence-activated cell sorting (FACS) 
analysis using an LDLR-specifi c monoclonal antibody (C-7 mAb, 
1:100 dilution, Santa-Cruz, CA), thus quantitating the levels of 
cell-surface LDLR. 

  Fig.   1.  Specifi city of hPCSK9-Ab for native PCSK9 in culture me-
dium and plasma. Immunoprecipitation was carried out with poly-
clonal hPCSK9-Ab against culture media of HEK293 cells 
respectively transfected with vector alone (pIRES), PCSK9, PCSK9 
and furin, and against plasma from three different individuals. Im-
munoprecipitates were separated by a 4–20% polyacrylamide gra-
dient SDS-PAGE, transferred to a polyvinylidene difl uoride 
membrane, and revealed with hPCSK9-Ab-HRP. PCSK9- � N 218  rep-
resents PCSK9 cleaved by furin ( 17 ).   
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occurs during the overnight incubation was ~3-fold lower 
with the R434W variant. These data suggest that this muta-
tion must have a profound infl uence on the conformation 
of PCSK9, because it partially delays the zymogen cleavage 
of proPCSK9 into PCSK9, the secretion of the latter, and 
the furin processing. Furthermore, the lower level of se-
creted PCSK9-R434W mutant with a minimal effect on its 
intracellular levels suggests that a fraction of this mutant 
protein is rapidly degraded in the cell. As a quantitative 
measure of the level of cell surface LDLR, FACS analysis of 
HuH7 cells revealed that compared with WT PCSK9, the 
R434W variant had ~30% of the LDLR-lowering activity, 
suggesting a partial LOF ( Fig. 3C ). Thus, the heterozygote 
variant PCSK9-R434W results in ~2-fold lower circulating 
levels of PCSK9 ( Fig. 2 ), rationalized by a ~3-fold lower 
secretion rate of the protein ( Fig. 3B ) and a ~40% lower 
LDL-C ( Fig. 2 ) likely related to its LOF on LDLR degrada-
tion ( Fig. 3C ). 

 Plasma PCSK9 levels correlate with cholesterol 
 Statistical analysis showed significant correlations be-

tween PCSK9 levels and TC ( r  = 0.382,  P  < 0.001), LDL-C 
( r  = 0.351,  P  < 0.001), TG ( r  = 0.356,  P  < 0.001), fasting 
glucose ( r  = 0.354,  P  < 0.001), age ( r  = 0.376,  P  < 0.001), 
and body mass index (BMI) ( r  = 0.264,  P  < 0.001) (  Fig. 4  ). 
 No signifi cant correlation was observed between PCSK9 
levels and HDL-cholesterol (HDL-C) ( r  =  � 0.074,  P  = 
0.239). Hormone treatment such as oral contracep-
tives (n = 19) or hormone replacement therapy (n = 7) 
had no detectable effect on plasma PCSK9 levels (not 
shown). 

 Stepwise regression: a model to predict PCSK9 value 
 Because many of the parameters studied are colinear, 

such as TC, LDL-C, and HDL-C, we performed a multiple 
stepwise regression using SPSS software. This stepwise re-
gression selects variables to include in a regression model 
for the purpose of identifying an optimal subset of predic-
tors. The best model to predict PCSK9 levels showed that 
TC ( �  = 8.84), fasting glucose ( �  = 11.58), TG ( �  = 9.19), 
gender ( �  =  � 10.14 for men), and age ( �  = 0.18) were 
parameters that had a signifi cant infl uence on PCSK9 lev-
els in this multiple regression model. This model explains 
~27% of the PCSK9 variability among individuals in our 
sample. 

 ELISA assay of PCSK9: identifi cation of a novel R434W 
LOF variant 

 We collected plasma from 254 healthy volunteers, 117 
males and 137 females. Clinical characteristics, fasting 
plasma lipids, and PCSK9 levels are shown in   Table 1  . 
There was no signifi cant difference in plasma PCSK9 lev-
els or in any other variables measured between men and 
women in this sample (Mann Whitney U test). Distribu-
tion of plasma PCSK9 levels measured by ELISA was 
skewed toward higher values in both men and women 
(supplementary Fig. I). The mean concentration was 89 
± 32 ng/ml (range, 35–225 ng/ml), and it did not differ 
signifi cantly between men and women (85 ± 27 ng/ml 
and 93 ± 35 ng/ml, respectively) (supplementary Fig. I). 
Combining both genders, we sequenced  PCSK9  in sub-
jects whose plasma values were at the extreme of the fre-
quency distribution, i.e., values < 60 ng/ml or > 150 ng/ml 
(  Fig. 2  ).  This revealed that 5/37 persons exhibiting 
low PCSK9 levels also showed either a known hypocho-
lesterolemic variation/polymorphism [R46L ( 3, 19 ) and 
double A53V + L10 ( 19, 34 )] or a new, previously unre-
ported variant R434W with no other mutations in the 
sequence ( Fig. 2 ). 

 Biosynthetic analysis using a 4 h pulse with  35 S-[Met+Cys] 
of HEK293 cells overexpressing the R434W mutant or the 
WT sequence revealed that the autocatalytic zymogen 
cleavage of proPCSK9 to PCSK9 is slightly reduced and the 
PCSK9 secretion was lower in the R434W mutant (  Fig. 3A  ).  
Calculations revealed an ~2.5-fold lower level of PCSK9 
in the 4 h medium. These data were further confi rmed 
by ELISA assays, which showed at steady state a 3-fold 
lower level of secreted PCSK9-R434W (0.60 µg/ml) com-
pared with the WT protein (1.82 µg/ml) ( Fig. 3B ). To 
compare the ability of PCSK9 to that of the R434W variant 
to degrade LDLR, we incubated overnight human hepatic 
HuH7 cells with either equivalent amounts of immunore-
active PCSK9 resulting from spent media of HEK293 cells 
overexpressing these constructs or 3-fold higher levels of 
the WT protein. The cells were then detached in EDTA 
and the media analyzed by Western blot ( Fig. 3B ), whereas 
the cells were immediately subjected to FACS analysis to 
estimate the levels of cell surface LDLR remaining after 
the incubation ( Fig. 3C ). The results showed that after 1 h 
(not shown) or overnight incubation ( Fig. 3B ) the levels 
of cell-associated PCSK9-R434W were ~2-fold higher than 
those of the WT protein and that the furin cleavage that 

 TABLE 1. Clinical characteristics, fasting plasma lipids, and PCSK9 levels of 254 healthy volunteers (mean ± SD) 

All Subjects (min–max)
n = 254

Men (min–max)
n = 117

Women (min–max)
n = 137

Age (years) 42 ± 13 (20–77) 41 ± 13 (20–77) 43 ± 12 (21–69)
BMI (kg/m 2 ) 24.5 ± 4.3 (16.2–41.6) 25.6 ± 4.0 (17.6–38.8) 23.4 ± 4.4 (16.2–41.6)
PCSK9 (ng/ml) 89.5 ± 31.9 (35.3–225.2) 85.3 ± 26.9 (35.3–172.1) 93.1 ± 35.4 (47.4–225.2)
TC (mmol/L) 4.86 ± 0.90 (2.83–7.30) 4.90 ± 0.89 (3.11–7.05) 4.83 ± 0.91 (2.83–7.30)
TG (mmol/L) 1.17 ± 0.62 (0.34–4.30) 1.22 ± 0.64 (0.45–4.30) 1.12 ± 0.59 (0.34–3.86)
LDL-C (mmol/L) 2.84 ± 0.80 (1.17–4.72) 3.01 ± 0.80 (1.17–4.72) 2.69 ± 0.78 (1.36–4.59)
HDL-C (mmol/L) 1.50 ± 0.38 (0.80–2.60) 1.33 ± 0.32 (0.80–2.36) 1.64 ± 0.36 (0.83–2.60)
TC-HDL-C 3.44 ± 1.02 (1.70–6.79) 3.85 ± 1.03 (2.00–6.79) 3.08 ± 0.88 (1.70–6.19)
Glucose (mmol/L) 4.84 ± 0.61 (3.60–6.70) 4.89 ± 0.63 (3.60–6.70) 4.79 ± 0.58 (3.60–6.70)
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ezetimibe treatment only. All patients had been treated 
for at least 3 months. There was no signifi cant difference 
in the correlation between PCSK9 and LDL-C changes ac-
cording to statin type, nor was there a gender difference in 
the relationship between PCSK9 and the reduction in 
LDL-C. However, a signifi cant correlation between plasma 
PCSK9 and the percent reduction of LDL-C from baseline 
(before drug treatment) was observed ( r  = 0.341,  P  < 
0.0001) (  Fig. 5  ).  A positive correlation between PCSK9 
plasma levels and change in LDL-C was also seen when we 
looked at each statin separately ( r  = 0.21, 0.28, and 0.4 for 
atorvastatin, rosuvastatin, and simvastatin, respectively) 
( not shown ). For the two statins (atorvastatin and rosuvasta-
tin) for which we had a suffi cient number of patients, we 
observed a signifi cant increase in PCSK9 with increasing 
statin dose in the absence of ezetimibe. When atorvastatin 
was increased from 5 to 80 mg, plasma PCSK9 levels 
increased from 109 ± 33 to 142 ± 35 ng/ml (n = 53,  P  for 
trend = 0.0001 by ANOVA) and for rosuvastatin from 5 to 
40 mg, plasma PCSK9 increased from 123 ± 23 to 168 ± 84 
ng/ml (n = 28,  P  for trend = 0.0001 by ANOVA). In treated 
patients (n = 139) FH (n = 51) subjects had higher PCSK9 
values than non-FH (n = 88, 147 ± 42 vs. 127 ± 41 ng/ml, 
 P  < 0.005). However, plasma PCSK9 levels and LDL-C reduc-
tion correlated positively to a similar extent in both sub-
sets ( r  = 0.316,  P  < 0.02 in FH and  r  = 0.275,  P  < 0.009 in 
non-FH). These data support the hypothesis that treat-

 Statins and ezetimibe upregulate plasma PCSK9 
 We measured plasma PCSK9 in 200 patients attending 

the lipid clinic at the IRCM, a tertiary care lipidology refer-
ence center. Fifty-nine patients were not on medication, 
98 were on statin treatment (55 on atorvastatin, 27 on 
rosu vastatin, 14 on simvastatin, and 2 on pravastatin), 39 
were on a statin-ezetimibe combination, and 4 were on 

  Fig.   2.  Sequencing  PCSK9  in individuals from extremes of distri-
bution of plasma levels revealed a novel R434W mutation. The co-
hort consisted of 117 males and 137 females ranging from 20 to 77 
years of age. Plasma was diluted 1:20 and PCSK9 measured by sand-
wich ELISA as described. DNA from subjects exhibiting low (<60 
ng/ml) and high (>150 ng/ml) PCSK9 plasma levels was subjected 
to exon sequencing. The new mutation R434W is emphasized in 
bold.   

  Fig.   3.  Functional analysis of the PCSK9-R434W variant. (A) HEK293 cells transiently transfected with 
cDNAs coding for either the V5-tagged PCSK9 (WT) or its R434W variant were pulse labeled with 
 35 S-[Met+Cys] for 4 h and the cell extract and media immunoprecipitated with a V5-mAb and the precipitate 
separated by 8% SDS-PAGE in 3% Tricine. Autoradiography allowed the identifi cation of the various forms 
of PCSK9 and image analysis allowed the quantifi cation of the relative amounts of mature PCSK9 in cells and 
media versus the total levels ( 17 ). (B) Spent media from HEK293 cells containing either 0.65 or 1.82 µg/ml 
of PCSK9 or 0.6 µg/ml of PCSK9-R434W were incubated overnight with naïve HuH7 cells. Following washes, 
the cells were then detached by EDTA and analyzed by Western blot (WB) using the V5-mAb. Notice that the 
R434W variant is somewhat resistant to furin cleavage, as evidenced by the lower levels of the PCSK9- � N 218  
form. The relative quantitation of the two forms is presented at the bottom of  Figure 3B . (C) The detached 
HuH7 cells were also analyzed by FACS using a C-7 mAb directed against the LDLR. The levels of the remain-
ing cell-surface LDLR are then expressed as compared with cells incubated with media of HEK293 cells 
transfected with an empty vector.   
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patients on treatments to lower LDL-C levels exhibited even 
higher plasma PCSK9 levels. In view of the upregulation of 
LDL-C by PCSK9, this could potentially result in an other-
wise dampened response to these treatments. 

  DISCUSSION  

 PCSK9 is now recognized as an important contributor 
in cholesterol homeostasis and has become a promising 
target for cholesterol-lowering therapy and CAD preven-
tion ( 25, 35, 36 ). Herein, we report a new sandwich ELISA 
to measure human plasma PCSK9 concentrations using a 
polyclonal antibody. With this method, plasma PCSK9 
levels in a healthy sample of population average ~90 ng/ml 
(ranging from 35.3 to 225.2 ng/ml) ( Fig. 2 ) and are 
signifi cantly correlated with both TC and LDL-C levels 
( Fig. 4A, B ). 

 The signifi cant correlation with TGs, though intrigu-
ing, agrees with a very recent report on a large multieth-

ments with statins, or a statin combined with ezetimibe, 
are signifi cantly associated with an increase in circulating 
levels of PCSK9. 

 Effects of hypercholesterolemia, statins, and 
statin-ezetimibe combination on plasma PCSK9 levels 

 We next stratifi ed patients according to their LDL-C state 
and/or drug regimen. Thus, we compared the mean plasma 
PCSK9 levels of 254 healthy controls, 59 hypercholester-
olemic patients without medication, 98 patients on statin 
treatment, and 39 on a statin-ezetimibe combination treat-
ment. We fi rst observed signifi cantly higher plasma PCSK9 
levels (~11%,  P  < 0.04) in hyperlipidemic patients com-
pared with controls. Furthermore, patients on statin treat-
ment presented a ~45% ( P  < 0.001) higher plasma PCSK9, 
whereas those on a combined statin-ezetimibe treatment 
showed ~77% ( P  < 0.001) higher levels (  Fig. 6  ).  We also 
observed that combined treatment was associated with 
~22% higher mean plasma PCSK9 levels when compared 
with equivalent doses of statin treatment alone ( P  = 0.001). 
We concluded that hyperlipidemia is associated with higher 
levels of PCSK9 than those observed in controls and that 

  Fig.   4.  Relationship between plasma PCSK9 and (A) TC, (B) 
LDL-C, (C) HDL-C, (D) TG, (E) fasting glucose, (F) age, (G) TC/
HDL-C ratio and (H) BMI.  r  and  P  were determined using Graph-
Pad Prism software.   

  Fig.   5.  Statins and ezetimibe are associated with high levels of 
human plasma PCSK9 as a function of LDL-C reduction. Plasma 
PCSK9 levels of 139 hypercholesterolemic subjects were measured 
by ELISA as described. Hypercholesterolemic patients were being 
treated with one of the following: statins, ezetimibe, or a combina-
tion of both. The percent reduction in LDL-C was then plotted 
against PCSK9 levels (ng/ml).  r  and  P  were determined with Graph-
Pad Prism software.   

  Fig.   6.  Relationship of hypercholesterolemia, statins, and statin-
ezetimibe combination with plasma PCSK9. Mean ± SEM. Signifi -
cance was determined by Student’s  t -test.   
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to 60 years of age ( 41 ). Other physiological changes occur 
with age, such as reduced physical activity, redistribution 
of body fat with a relative increase in visceral adipose mass, 
decreased insulin sensitivity, and increased blood pres-
sure. Thus, a correlation between PCSK9 and age may 
explain, in part, correlations with other parameters modu-
lated by age. 

 This study fi rst demonstrated that measurements of 
plasma PCSK9 levels can help in the identifi cation of 
novel PCSK9 variants using our strategy. Indeed, we iden-
tifi ed a new variant, R434W ( Fig. 2 ). Biosynthetic analysis 
of this variant revealed that it results in a slightly reduced 
zymogen activation of proPCSK9, a lower secretion rate 
by ~50%, and a ~70% lower activity of the PCSK9-
enhanced degradation of LDLR in HuH7 cells ( Fig. 3 ). 
The ~3-fold lower secretion rate observed in HEK293 cells 
( Fig. 3A, B ) correlate with the ~50% lower levels of circu-
lating PCSK9-R434W in this heterozygote subject, which 
is 51 ng/ml versus the mean value of 89 ± 32 ng/ml in 
normal subjects ( Fig. 2 ). The LOF of the PCSK9-R434W is 
intriguing, as this residue does not seem to be implicated 
in the direct interaction of the catalytic domain of PCSK9 
with the EGF-A domain of the LDLR ( 8 ). The R434W vari-
ant occurs in a loop structure occurring in a hinge region 
between the catalytic domain and the Cys-His rich 
domain of PCSK9 ( 42 ) (supplementary Fig. II). However, 
because the Cys-His rich domain is critical for the sort-
ing of the complex LDLR-PCSK9 toward endosomes/
lysosomes for degradation ( 7 ), the R434W mutation may 
hamper such a process and hence result in a LOF (sup-
plementary Fig. II). 

 The Leu insertion in the signal peptide of PCSK9 (p.
L15ins1L or L10) is often associated with another varia-
tion, namely A53V, and this double variant has been 
reported to be associated with low plasma PCSK9 levels, a 
fi nding that supports the hypothesis that a modifi cation in 
the signal peptide could subtly interfere with protein fold-
ing, processing, and/or secretion ( 43 ). A high level of 
PCSK9 (222 ng/ml) was observed in an hypercholester-
olemic patient of African descent exhibiting the single vari-
ant A443T. Although rare in the Caucasian population, the 
A443T mutation is relatively frequent in African-Americans, 
where the heterozygous condition is associated with a 
wide range of cholesterol values ( 19 ). The PCSK9 mutation 
A443T has been reported in a case of mild and variable 
hypercholesterolemia (GOF), which is sensitive to diet, but 
the mutation did not segregate with the phenotype in the 

nic cohort analysis of plasma PCSK9 ( 37 ). With respect to 
glucose, it seems that factors that contribute to insulin 
resistance such as TGs and BMI are associated with higher 
circulating levels PCSK9 ( 37 ). Furthermore, it was also 
recently reported that in mice, PCSK9 defi ciency reduces 
postprandial triglyceridemia and enhances the hepatic 
clearance rate of chylomicrons ( 38 ). The underlying 
mechanism(s) requires more extensive studies. Three 
other groups also developed ELISAs for PCSK9 using dif-
ferent approaches, species, and/or antigens to produce 
the polyclonal antibodies ( 14, 30, 39 ). One report pre-
sented a mean value of ~200 ng/ml in plasma with a range 
of 50–600 ng/ml ( 14 ), another a range of 11–115 ng/ml 
in serum (no mean value given) ( 39 ), and the third, a 
mean value of ~4  � g/ml and a range of 0.1–9.3  � g/ml 
( 30 ). Using a different method involving immunoprecipi-
tation, immunoblotting, and densitometry, Mayne et al. 
( 40 ) obtained a mean concentration of plasma PCSK9 of 
6.1  � g/ml, which is about 50 times the value found in this 
study but similar to that reported by Lambert et al. ( 30 ). 
The differences are likely due to sample, methodology, 
antibody specifi cities, and the standard used for the abso-
lute quantitation of PCSK9. We used purifi ed full-length 
human PCSK9 as our reference standard; this was con-
fi rmed by amino acid sequence analysis and mass spec-
trometry and quantitated by amino acid composition of a 
known weighed sample. Only our assay recognizes both 
active and furin-inactivated forms of PCSK9 ( Fig. 1 ), 
offer ing the potential to measure the ratio of both forms 
in relation to drug effects and in response to physiologi-
cal modulators. 

 While Mayne et al. ( 40 ) found signifi cant correlations 
between PCSK9 and cholesterol levels in men only within 
a cohort of 182 individuals, we did not confi rm this fi nd-
ing in our cohort of 254 individuals, because we found a 
signifi cant correlation with cholesterol levels in both men 
( P  < 0.001) and women ( P  < 0.001) (  Table 2  ).  This differ-
ence may be in part related to the age of the population 
sampled [mean age of 53 ( 40 ) or 42 in the present study]. 
However, in a much larger cohort comprising 3,138 indi-
viduals, Lakoski et al. ( 37 ) reported that circulating PCSK9 
levels are slightly higher in premenopausal women than in 
postmenopausal women and that it is ~15% higher in 
women versus men. Given the physiological role of PCSK9 
in degrading LDLR, the observed correlation with LDL-C 
was expected. Cholesterol metabolism is profoundly modi-
fi ed during aging, and LDL-C increases by ~40% from 20 

 TABLE 2. Relationship between plasma PCSK9 and individual variables in men and women 

All Subjects (n = 254) Men (n = 117) Women (n = 137)

 r  P  r  P  r  P 

Age (years) 0.376 <0.001 0.276 0.003 0.448 <0.001
BMI (kg/m 2 ) 0.264 <0.001 0.280 0.002 0.347 <0.001
TC (mmol/L) 0.382 <0.001 0.404 <0.001 0.381 <0.001
TG (mmol/L) 0.356 <0.001 0.304 <0.001 0.411 <0.001
LDL-C (mmol/L) 0.351 <0.001 0.370 <0.001 0.372 <0.001
HDL-C (mmol/L)  � 0.074 0.239  � 0.037 0.691  � 0.174 0.042
TC-HDL-C 0.273 <0.001 0.303 <0.001 0.422 <0.001
Glucose (mmol/L) 0.354 <0.001 0.230 0.013 0.466 <0.001
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protein and the fragment cut by furin by Western blot. This 
method allowed the identifi cation of a novel R434W variant 
exhibiting a partial LOF on LDLR degradation. This report 
is also the fi rst demonstration that ezetimibe administration 
in combination with a statin is associated with a markedly 
high PCSK9 level, consistent with the ability of ezetimibe to 
signifi cantly enhance the statin effect on LDL-C, as evi-
denced by a meta-analysis ( 48 ). If the high LDL-C concen-
trations still observed in patients during treatment refl ect an 
increase in PCSK9 levels, drugs aimed at reducing PCSK9 
expression would be expected to greatly enhance current 
cholesterol-lowering therapies. With the rapid pace of dis-
coveries in the fi eld, it is hoped that within a few years lead 
molecules reducing the level and/or activity of PCSK9 will 
be uncovered and that these will emerge for therapeutic 
use after clinical trials to assess their potency and safety. 
In that context, it was recently shown that administration 
of a monoclonal antibody that blocks the PCSK9-LDLR in-
teraction to either mice or cynomolgus monkeys results in 
an ~80% drop in LDL-C lasting 10 days and that in mice, 
such an effect enhances the LDL-C lowering by the statin 
mevinolin ( 49 ).  
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